Copper Enhanced Monooxygenase Activity and FT-IR Spectroscopic Characterisation of Biotransformation Products in Trichloroethylene Degrading Bacterium: Stenotrophomonas maltophilia PM102

نویسندگان

  • Piyali Mukherjee
  • Pranab Roy
چکیده

Stenotrophomonas maltophilia PM102 (NCBI GenBank Acc. no. JQ797560) is capable of growth on trichloroethylene as the sole carbon source. In this paper, we report the purification and characterisation of oxygenase present in the PM102 isolate. Enzyme activity was found to be induced 10.3-fold in presence of 0.7 mM copper with a further increment to 14.96-fold in presence of 0.05 mM NADH. Optimum temperature for oxygenase activity was recorded at 36°C. The reported enzyme was found to have enhanced activity at pH 5 and pH 8, indicating presence of two isoforms. Maximum activity was seen on incubation with benzene compared to other substrates like TCE, chloroform, toluene, hexane, and petroleum benzene. K(m) and V(max) for benzene were 3.8 mM and 340 U/mg/min and those for TCE were 2.1 mM and 170 U/mg/min. The crude enzyme was partially purified by ammonium sulphate precipitation followed by dialysis. Zymogram analysis revealed two isoforms in the 70% purified enzyme fraction. The activity stain was more prominent when the native gel was incubated in benzene as substrate in comparison to TCE. Crude enzyme and purified enzyme fractions were assayed for TCE degradation by the Fujiwara test. TCE biotransformation products were analysed by FT-IR spectroscopy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistent Organic Pollutants Induced Protein Expression and Immunocrossreactivity by Stenotrophomonas maltophilia PM102: A Prospective Bioremediating Candidate

A novel bacterium capable of growth on trichloroethylene as the sole carbon source was identified as Stenotrophomonas maltophilia PM102 by 16S rDNA sequencing (accession number of NCBI GenBank: JQ797560). In this paper, we report the growth pattern, TCE degradation, and total proteome of this bacterium in presence of various other carbon sources: toluene, phenol, glucose, chloroform, and benzen...

متن کامل

Purification and identification of trichloroethylene induced proteins from Stenotrophomonas maltophilia PM102 by immuno-affinity-chromatography and MALDI-TOF Mass spectrometry

A novel bacterial isolate capable of growth on trichloroethylene as the sole carbon source was identified as Stenotrophomonas maltophilia PM102 by 16S rDNA sequencing (GenBank Acc.no. JQ797560). Serum was obtained from a rabbit immunized with the total protein extracted from the PM102 isolate grown in 0.2% TCE with 0.2% peptone. Antibodies to the common antigens were removed by preadsorbing the...

متن کامل

Modulation of FAD-dependent monooxygenase activity from aromatic compounds-degrading Stenotrophomonas maltophilia strain KB2.

The purpose of this study was purification and characterization of phenol monooxygenase from Stenotrophomonas maltophilia strain KB2, enzyme that catabolises phenol and its derivatives through the initial hydroxylation to catechols. The enzyme requires NADH and FAD as a cofactors for activity, catalyses hydroxylation of a wide range of monocyclic phenols, aromatic acids and dihydroxylated deri...

متن کامل

Antimicrobial Resistance Pattern of Stenotrophomonas maltophilia Isolates from a Tertiary Care Setting in Rawalpindi, Pakistan

Introduction: Stenotrophomonas maltophilia is intrinsically resistant to many antimicrobials. Like Pseudomonas spp., this bacterium has a remarkable ability to cause infections, particularly in the respiratory and urinary tracts. This study aims to determine the antimicrobial resistance pattern of S. maltophilia isolates collected from a tertiary care setting and frequency of multi, extensively...

متن کامل

Identification of Electrode Respiring, Hydrocarbonoclastic Bacterial Strain Stenotrophomonas maltophilia MK2 Highlights the Untapped Potential for Environmental Bioremediation

Electrode respiring bacteria (ERB) possess a great potential for many biotechnological applications such as microbial electrochemical remediation systems (MERS) because of their exoelectrogenic capabilities to degrade xenobiotic pollutants. Very few ERB have been isolated from MERS, those exhibited a bioremediation potential toward organic contaminants. Here we report once such bacterial strain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013